Assistants
- GETList assistants
- POSTCreate assistant
- GETRetrieve assistant
- POSTModify assistant
- DELDelete assistant
- POSTCreate thread
- POSTCreate thread and run
- GETRetrieve thread.
- POSTModify thread
- DELDelete thread
- GETList messages
- POSTCreate message
- GETRetrieve message
- POSTModify message
- DELDelete message
- GETList runs
- POSTCreate run
- GETRetrieve run
- POSTModify run
- POSTCancel run
- GETList run steps
- GETRetrieve run step
- POSTThe run step object
Chat
Completions
Embeddings
Evals
Files
Fine-tuning
- GETList checkpoint permissions
- POSTCreate checkpoint permissions
- DELDelete checkpoint permission
- GETList your organization's fine-tuning jobs
- POSTCreate a fine-tuning job
- GETRetrieve fine-tuning job
- POSTImmediately cancel a fine-tune job.
- GETList checkpoints for a fine-tuning job.
- GETGet status updates for a fine-tuning job.
Moderations
API Reference
Audit Logs
Certificates
Usage
Projects
- GETReturns a list of projects.
- POSTCreate project
- GETRetrieves a project.
- POSTModify project
- GETList project API keys
- GETRetrieve project API key
- DELDelete project API key
- POSTArchive project
- GETList project rate limits
- POSTUpdate project rate limit
- GETList project service accounts
- POSTCreate project service account
- GETRetrieve project service account
- DELDelete project service account
- GETReturn project users
- POSTCreate project user
- GETRetrieve project user
- POSTModify project user
- DELDelete project user
Responses
Vector stores
- GETReturns a list of vector stores.
- POSTCreate a vector store.
- GETRetrieves a vector store.
- POSTModifies a vector store.
- DELDelete a vector store.
- POSTCreate a vector store file batch.
- GETRetrieves a vector store file batch.
- POSTCancel vector store file batch
- GETReturns a list of vector store files in a batch.
- GETReturns a list of vector store files.
- POSTCreate vector store file
- GETRetrieves a vector store file.
- POSTUpdate attributes on a vector store file.
- DELDelete vector store file
- GETRetrieve vector store
- POSTSearch vector store
Evals
Create eval
Create the structure of an evaluation that can be used to test a model’s performance. An evaluation is a set of testing criteria and a datasource. After creating an evaluation, you can run it on different models and model parameters. We support several types of graders and datasources. For more information, see the Evals guide.
POST
/
evals
Copy
Ask AI
curl --request POST \
--url https://api.openai.com/v1/evals \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '{
"name": "<string>",
"metadata": {},
"data_source_config": {
"type": "custom",
"item_schema": "{\n \"type\": \"object\",\n \"properties\": {\n \"name\": {\"type\": \"string\"},\n \"age\": {\"type\": \"integer\"}\n },\n \"required\": [\"name\", \"age\"]\n}\n",
"include_sample_schema": false
},
"testing_criteria": [
{
"type": "label_model",
"name": "<string>",
"model": "<string>",
"input": [
{
"role": "<string>",
"content": "<string>"
}
],
"labels": [
"<string>"
],
"passing_labels": [
"<string>"
]
}
],
"share_with_openai": false
}'
Copy
Ask AI
{
"object": "eval",
"id": "<string>",
"name": "Chatbot effectiveness Evaluation",
"data_source_config": {
"type": "custom",
"schema": "{\n \"type\": \"object\",\n \"properties\": {\n \"item\": {\n \"type\": \"object\",\n \"properties\": {\n \"label\": {\"type\": \"string\"},\n },\n \"required\": [\"label\"]\n }\n },\n \"required\": [\"item\"]\n}\n"
},
"testing_criteria": "eval",
"created_at": 123,
"metadata": {},
"share_with_openai": true
}
Authorizations
Bearer authentication header of the form Bearer <token>
, where <token>
is your auth token.
Body
application/json
Response
201 - application/json
OK
An Eval object with a data source config and testing criteria. An Eval represents a task to be done for your LLM integration. Like:
- Improve the quality of my chatbot
- See how well my chatbot handles customer support
- Check if o3-mini is better at my usecase than gpt-4o
Was this page helpful?
Copy
Ask AI
curl --request POST \
--url https://api.openai.com/v1/evals \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '{
"name": "<string>",
"metadata": {},
"data_source_config": {
"type": "custom",
"item_schema": "{\n \"type\": \"object\",\n \"properties\": {\n \"name\": {\"type\": \"string\"},\n \"age\": {\"type\": \"integer\"}\n },\n \"required\": [\"name\", \"age\"]\n}\n",
"include_sample_schema": false
},
"testing_criteria": [
{
"type": "label_model",
"name": "<string>",
"model": "<string>",
"input": [
{
"role": "<string>",
"content": "<string>"
}
],
"labels": [
"<string>"
],
"passing_labels": [
"<string>"
]
}
],
"share_with_openai": false
}'
Copy
Ask AI
{
"object": "eval",
"id": "<string>",
"name": "Chatbot effectiveness Evaluation",
"data_source_config": {
"type": "custom",
"schema": "{\n \"type\": \"object\",\n \"properties\": {\n \"item\": {\n \"type\": \"object\",\n \"properties\": {\n \"label\": {\"type\": \"string\"},\n },\n \"required\": [\"label\"]\n }\n },\n \"required\": [\"item\"]\n}\n"
},
"testing_criteria": "eval",
"created_at": 123,
"metadata": {},
"share_with_openai": true
}
Assistant
Responses are generated using AI and may contain mistakes.